Login for faster access to the best deals. Click here if you don't have an account.

MOFAAttested Three Year Telecommunication Engineering Diploma for UAE For Sale

1 week ago Services Lahore   26 views

-- ₨

  • mofaattested-three-year-telecommunication-engineering-diploma-for-uae-big-0
  • mofaattested-three-year-telecommunication-engineering-diploma-for-uae-big-1
  • mofaattested-three-year-telecommunication-engineering-diploma-for-uae-big-2
Location: Lahore
Price: -- ₨

MOFAAttested Three Year Telecommunication Engineering Diploma for UAE

Telecommunication is the transmission of information by various types of technologies over wire, radio, optical or other electromagnetic systems.

What are the means of telecommunication?

Telecommunications are the means of electronic transmission of information over distances. The information may be in the form of voice telephone calls, data, text, images, or video. Today, telecommunications are used to organize more or less remote computer systems into telecommunications networks.

Electrical telegraph

Main articles: Electrical telegraph and Transatlantic telegraph cable

Stock telegraph ticker machine by Thomas Edison

Experiments on communication with electricity, initially unsuccessful, started in about 1726. Scientists including Laplace, Ampère, and Gauss were involved.

An early experiment in electrical telegraphy was an 'electrochemical' telegraph created by the German physician, anatomist and inventor Samuel Thomas von Sömmerring in 1809, based on an earlier, less robust design of 1804 by Spanish polymath and scientist Francisco Salva Campillo.[9] Both their designs employed multiple wires (up to 35) in order to visually represent almost all Latin letters and numerals. Thus, messages could be conveyed electrically up to a few kilometers (in von Sömmerring's design), with each of the telegraph receiver's wires immersed in a separate glass tube of acid. An electric current was sequentially applied by the sender through the various wires representing each digit of a message; at the recipient's end the currents electrolysed the acid in the tubes in sequence, releasing streams of hydrogen bubbles next to each associated letter or numeral. The telegraph receiver's operator would visually observe the bubbles and could then record the transmitted message, albeit at a very low baud rate.[9] The principal disadvantage to the system was its prohibitive cost, due to having to manufacture and string-up the multiple wire circuits it employed, as opposed to the single wire (with ground return) used by later telegraphs.The first working telegraph was built by Francis Ronalds in 1816 and used static electricity.[10]Charles Wheatstone and William Fothergill Cooke patented a five-needle, six-wire system, which entered commercial use in 1838.[11] It used the deflection of needles to represent messages and started operating over twenty-one kilometres (thirteen miles) of the Great Western Railway on 9 April 1839. Both Wheatstone and Cooke viewed their device as "an improvement to the [existing] electromagnetic telegraph" not as a new device.On the other side of the Atlantic Ocean, Samuel Morse developed a version of the electrical telegraph which he demonstrated on 2 September 1837. Alfred Vail saw this demonstration and joined Morse to develop the register—a telegraph terminal that integrated a logging device for recording messages to paper tape. This was demonstrated successfully over three miles (five kilometres) on 6 January 1838 and eventually over forty miles (sixty-four kilometres) between Washington, D.C. and Baltimore on 24 May 1844. The patented invention proved lucrative and by 1851 telegraph lines in the United States spanned over 20,000 miles (32,000 kilometres).[12] Morse's most important technical contribution to this telegraph was the simple and highly efficient Morse Code, co-developed with Vail, which was an important advance over Wheatstone's more complicated and expensive system, and required just two wires. The communications efficiency of the Morse Code preceded that of the Huffman code in digital communications by over 100 years, but Morse and Vail developed the code purely empirically, with shorter codes for more frequent letters.The submarine cable across the English Channel, wire coated in gutta percha, was laid in 1851.[13] Transatlantic cables installed in 1857 and 1858 only operated for a few days or weeks (carried messages of greeting back and forth between James Buchanan and Queen Victoria) before they failed.[14] The project to lay a replacement line was delayed for five years by the American Civil War. The first successful transatlantic telegraph cable was completed on 27 July 1866, allowing continuous transatlantic telecommunication for the first time.For most of the twentieth century televisions used the cathode ray tube (CRT) invented by Karl Braun. Such a television was produced by Philo Farnsworth, who demonstrated crude silhouette images to his family in Idaho on September 7, 1927.[34] Farnsworth's device would compete with the concurrent work of Kalman Tihanyi and Vladimir Zworykin. Though the execution of the device was not yet what everyone hoped it could be, it earned Farnsworth a small production company. In 1934, he gave the first public demonstration of the television at Philadelphia's Franklin Institute and opened his own broadcasting station.[35] Zworykin's camera, based on Tihanyi's Radioskop, which later would be known as the Iconoscope, had the backing of the influential Radio Corporation of America (RCA). In the United States, court action between Farnsworth and RCA would resolve in Farnsworth's favour.[36] John Logie Baird switched from mechanical television and became a pioneer of colour television using cathode-ray tubes.After mid-century the spread of coaxial cable and microwave radio relay allowed television networks to spread across even large countries.

Home Cleaning
Home Cleaning
Home Cleaning